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Introduction: The increasing use of non-steroidal anti-inflammatory drugs 
(NSAIDs) has raised concerns regarding their environmental impact. To address 
this, understanding the effects of NSAIDs on bacteria is crucial for bioremediation 
efforts in pharmaceutical-contaminated environments. The primary challenge in 
breaking down persistent compounds lies not in the biochemical pathways but in 
capacity of bacteria to surmount stressors.

Methods: In this study, we examined the biodegradative activity, morphological 
and physiological changes, and ultrastructural adaptations of Rhodococcus 
cerastii strain IEGM 1243 when exposed to ibuprofen, diclofenac, and their 
mixture.

Results and Discussion: Our findings revealed that R. cerastii IEGM 1243 exhibited 
moderate biodegradative activity towards the tested NSAIDs. Cellular respiration 
assay showed higher metabolic activity in the presence of NSAIDs, indicating their 
influence on bacterial metabolism. Furthermore, catalase activity in R. cerastii 
IEGM 1243 exposed to NSAIDs showed an initial decrease followed by fluctuations, 
with the most significant changes observed in the presence of DCF and the NSAID 
mixture, likely influenced by bacterial growth phases, active NSAID degradation, 
and the formation of multicellular aggregates, suggesting potential intercellular 
synergy and task distribution within the bacterial community. Morphometric 
analysis demonstrated alterations in size, shape, and surface roughness of cells 
exposed to NSAIDs, with a decrease in surface area and volume, and an increase 
in surface area-to-volume ratio (SA/V). Moreover, for the first time, transmission 
electron microscopy confirmed the presence of lipid inclusions, polyphosphates, 
and intracellular membrane-like structures in the ibuprofen-treated cells.

Conclusion: These results provide valuable insights into the adaptive responses 
of R. cerastii IEGM 1243 to NSAIDs, shedding light on the possible interaction 
between bacteria and pharmaceutical compounds in the environment.
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1 Introduction

Chemical pollution of the environment, alongside climate change 
and catastrophic biodiversity loss, is recognized as a major global 
environmental problem demanding urgent attention and resolution 
(Wang et al., 2021; Brack et al., 2022). Of particular concern is the 
continuous introduction of active pharmaceutical ingredients (APIs) 
into ecosystems. Due to their biological activity and stable chemical 
structure, APIs have adverse effects on non-target organisms and pose 
a significant threat to the delicate balance of aquatic and terrestrial 
environments (Mulkiewicz et al., 2021; Wilkinson et al., 2022).

Among the various APIs detected in environmental samples, 
nonsteroidal anti-inflammatory drugs (NSAIDs) have garnered 
considerable attention owing to their widespread use and persistence 
(Richards et al., 2011; Domaradzka et al., 2015; Izadi et al., 2020; Mejía-
García et al., 2020; Parolini, 2020; Herzig et al., 2021; Mulkiewicz et al., 
2021; Petrie and Camacho-Muñoz, 2021; Rastogi et  al., 2021; 
Wojcieszyńska et al., 2022). Specifically, diclofenac (DCF) and ibuprofen 
(IBP), which consistently rank among the most frequently detected 
pharmaceuticals in environmental matrices, have drawn considerable 
interest. The incomplete decomposition of DCF and IBP in the human 
body leads to their migration through sewage and wastewater treatment 
plants to surface water (Lonappan et al., 2016; Chopra and Kumar, 2020). 
The improper disposal of unused or expired DCF and IBP significantly 
contributes to their environmental contamination, as these medications 
are often flushed down toilets or disposed of in landfills, ultimately 
entering wastewater treatment plants or leaching into groundwater 
(Sadutto et al., 2021). Additionally, the manufacturing process of DCF 
and IBP can release these compounds into the environment, further 
contributing to their presence in ecosystems (Bibi et al., 2023).

The main environmental hazard of these NSAIDs lies in their 
biological activity, even at low (μg/L) concentrations. The toxic effects 
of DCF and IBP on birds, aquatic vertebrates and invertebrates, 
microalgae, and bacterial consortia have been well-documented 
(Cleuvers, 2004; Swan et al., 2006; Ericson et al., 2010; Parolini et al., 
2011; De Felice et al., 2012; Memmert et al., 2013; González-González 
et al., 2014; Gamarra et al., 2015; Davids et al., 2017; Mezzelani et al., 
2018; Aguilar-Romero et al., 2020; Chopra and Kumar, 2020; Parolini, 
2020; Jan-Roblero and Cruz-Maya, 2023). Exposure to these NSAIDs 
can disrupt reproductive processes in living organisms, impair growth, 
and even cause mortality (Ortiz de García et al., 2014; Lonappan et al., 
2016). DCF and IBP have the potential to bioaccumulate in the food 
chain, meaning they can concentrate in the tissues of organisms at 
higher levels than in the surrounding environment (Xie et al., 2015; 
Mezzelani et al., 2018). This accumulation can lead to adverse effects 
in higher trophic levels, including fish-eating birds and mammals. 
Moreover, the toxicity of DCF and IBP can have cascading effects on 
aquatic ecosystems, altering the balance of species and disrupting 
crucial ecosystem functions (Świacka et al., 2021).

In addition to addressing the environmental impact of these 
NSAIDs, extensive research has elucidated the microbial biodegradation 
pathways of NSAIDs, as comprehensively reviewed by Guzik and 
Wojcieszyńska (2019). However, despite significant efforts to examine 
the effects of NSAIDs on various organisms, our understanding of their 
specific impacts on microorganisms, particularly with respect to 
response mechanisms and adaptation patterns, remains limited (Jiang 
et al., 2017; Ivshina et al., 2019; Tyumina et al., 2019, 2020; Żur et al., 
2020; Ivshina et al., 2021b; Żur et al., 2021).

Rhodococci are intriguing members of microbial communities, 
renowned for their remarkable survival strategies and exceptional 
ability to metabolize xenobiotic compounds, including 
pharmaceuticals (Yam et al., 2010; de Carvalho, 2012; Cheremnykh 
et al., 2018; Kuyukina and Ivshina, 2019; Rodrigues and de Carvalho, 
2019; Pátek et al., 2021; Ivshina et al., 2021a, 2022c). These survival 
mechanisms encompass cell aggregation, production of extracellular 
polymeric substances, changes in lipid content, reduction of reactive 
oxygen species, and accumulation of intracellular storage compounds 
(Pátek et al., 2021). Despite their potential as valuable bioremediation 
agents, our understanding of how rhodococci respond to 
pharmaceuticals, particularly NSAIDs, remains scarce.

In our previous studies, we  provided evidence of the 
biodegradation potential of rhodococci, demonstrating their ability to 
degrade NSAIDs such as DCF, paracetamol, IBP, and ketoprofen 
(Ivshina et al., 2006, 2019, 2021b; Bazhutin et al., 2022). Building on 
these foundational investigations, our current research aims to explore 
the individual and combined effects of IBP and DCF on Rhodococcus 
cerastii strain IEGM 1243 (GenBank # JAJNDD010000001-
JAJNDD010000295; http://www.iegmcol.ru/strains/rhodoc/cerastii/r_
cerastii1243.html accessed on 31 May 2023). Understanding the 
response mechanisms and adaptive behavior of rhodococci to 
pharmaceutical exposure is vital for assessing the potential risks posed 
by the widespread occurrence of NSAIDs and for developing effective 
strategies to mitigate their environmental impact.

In light of the aforementioned gaps in knowledge, this 
investigation aims to address the following research questions: (1) 
How do NSAIDs, specifically IBP and DCF, affect the biodegradative 
activity of R. cerastii strain IEGM 1243? (2) What are the 
morphological and physiological changes in R. cerastii IEGM 1243 
cells when exposed to IBP, DCF, and their mixture? (3) Are there 
ultrastructural adaptations in R. cerastii IEGM 1243 cells in response 
to NSAID exposure?

This investigation contributes to the expanding body of knowledge 
concerning the ecotoxicity of pharmaceuticals and the intricate 
interactions between microorganisms and environmental 
contaminants. The findings of this study will provide important 
information on the effect of NSAIDs on rhodococci. Understanding 
how biodegraders adapt can help to build more efficient biocatalysts, 
allowing for more informed decision-making and encouraging 
sustainable management of pharmaceutical pollution in ecosystems.

2 Materials and methods

2.1 Strain cultivation

R. cerastii strain IEGM 1243 from the Regional Specialized 
Collection of Alkanotrophic Microorganisms (IEGM; WFCC-
WDCM 768; UNU/CKP 73559/480868; www.iegmcol.ru accessed 
on 31 May 2023) was used in this study. The strain IEGM 1243 was 
isolated from soil, lake shore Kumnylor, Tyumen region, Russia. In 
preliminary studies it showed IBP-degrading (100 mg/L) activity in 
the presence of 0.1% n-hexadecane (data not shown). Moreover, 
IEGM 1243 uses n-hexadecane as a sole carbon source and is 
resistant to Mo6+ (5.0 mM). The experiments were conducted in 
250 mL Erlenmeyer flasks containing 100 mL of “RS” (Rhodococcus 
Surfactant) mineral salt medium. The composition of the medium 

https://doi.org/10.3389/fmicb.2023.1275553
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://www.iegmcol.ru/strains/rhodoc/cerastii/r_cerastii1243.html
http://www.iegmcol.ru/strains/rhodoc/cerastii/r_cerastii1243.html
http://www.iegmcol.ru


Tyumina et al. 10.3389/fmicb.2023.1275553

Frontiers in Microbiology 03 frontiersin.org

per liter included: KNO3 1.0 g, K2HPO4 1.0 g, KH2PO4 1.0 g, NaCl 
1.0 g, MgSO4 × 7H2O 0.2 g, CaCl2 × 2H2O 0.02 g, FeCl3 0.001 g, and 
0.1% (v/v) trace element solution (1.5 g/L FeCl3 × 7H2O, 0.1 g/L 
H3BO3, 0.01 g/L ZnSO4 × 7H2O, 0.05 g/L Co (NO3)2 × 6H2O, 0.005 g/L 
CuSO4 × 5H2O, and 0.005 g/L MnCl2 × 4H2O). IBP (C13H17O2Na; 
CAS: 31121-93-4; (RS)-2-(4-(2-methylpropyl)phenyl)propanoic 
acid) and DCF (C14H10Cl2NNaO2, CAS: 15307–79-6, 
2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid) were used as 
sodium salts (Sigma-Aldrich, St. Louis, MO, United States; Glentham 
Life Sciences, Corsham, United Kingdom) and added to the mineral 
salt medium, each at a final concentration of 50 mg/L. Stock solutions 
of IBP and DCF (50 mg/mL) were prepared individually using water 
and stored at 4°C before use. We opted for this high concentration 
of NSAIDs due to the potential application of Rhodococcus-based 
biocatalysts in  local post-treatment technologies during drug 
manufacturing, where influents contain elevated pharmaceutical 
levels. Moreover, previous research on biodegradation and the 
diverse effects of pharmaceuticals on bacteria supports the use of 
higher dosages (Alobaidi et al., 2021; Żur et al., 2021; Mohamed 
et al., 2023; Suleiman et al., 2023). D-glucose was employed as an 
additional carbon and energy source at a concentration of 
0.5 g/L. Cells of R. cerastii IEGM 1243 grown for 3 days in LB broth 
(Himedia Laboratories Pvt. Limited, Maharashtra, India) and 
washed twice with phosphate buffer (pH 7.0) were added to the 
medium to a concentration of 0.96 × 107 cells/mL. The experiments 
were conducted at 160 rpm and 28°C.

The following treatments were used in the experiments: (1) 
mineral salt medium + R. cerastii IEGM 1243 + 0.5 g/L glucose 
(biotic control), (2) mineral salt medium + R. cerastii IEGM 
1243 + 0.5 g/L glucose + 50 mg/L IBP (positive control 1), (3) 
mineral salt medium + R. cerastii IEGM 1243 + 0.5 g/L glucose 
+50 mg/L DCF (positive control 2), (4) mineral salt 
medium + R. cerastii IEGM 1243 + 0.5 g/L glucose + NSAID mixture 
(50 mg/L IBP + 50 mg/L DCF) (positive control 3), (5) mineral salt 
medium +0.5 g/L glucose + 50 mg/L NSAID (abiotic controls), (6) 
mineral salt medium + autoclaved R. cerastii IEGM 1243 + 0.5 g/L 
glucose + 50 mg/L NSAID (sorption controls). The abiotic controls 
were necessary to elucidate the abiotic degradation of the 
pharmaceuticals, while the sorption controls were essential for 
assessing the removal of the pharmaceuticals by sorbing them onto 
bacterial cells. The biotic (negative) control was essential to 
differentiate the effects of NSAIDs on bacterial cells from the 
natural variations in their life cycle.

2.2 Microscopic investigations

2.2.1 Cell viability
To determine the viability of cells, the bacterial suspension was 

stained using a LIVE/DEAD® BacLight™ Bacterial Viability Kit 
following the manufacturer’s protocol (Invitrogen, Waltham, MA, 
United  States). The staining process allowed for differentiation 
between live and dead cells. Visualization of the stained cells was 
carried out using an Axio Imager M2 microscope (Carl Zeiss 
Microscopy GmbH, Jena, Germany) in fluorescence mode 
(Luchnikova et al., 2022). Images were captured by an Axoicam 506 
Color camera (Carl Zeiss Microscopy GmbH, Jena, Germany) and 
Zen Blue 3.1 software (Carl Zeiss Microscopy GmbH, Jena, Germany).

2.2.2 Lipid inclusions staining
To identify intracellular lipid inclusions, the rhodococci were 

stained with Nile Red (Nanjing Dulai Biotechnology Co., Nanjing, 
China) (Spiekermann et  al., 1999) with slight modifications 
(Luchnikova et al., 2022). Briefly, the cell suspension was centrifuged 
at 12,000 rpm for 5 min to obtain a cell pellet. The cell pellet was then 
resuspended in 1 mL of distilled water and mixed with 40 μL of a 
0.08% solution of Nile Red in dimethyl sulfoxide. This suspension was 
incubated at 28°C with shaking at 160 rpm for 40 min. After 
incubation, cells were harvested by centrifugation (12,000 rpm for 
5 min), resuspended in 1 mL of distilled water and visualized using the 
Axio Imager M2 microscope (Carl Zeiss Microscopy GmbH, Jena, 
Germany). Two different spectral settings were utilized: yellow-gold 
fluorescence with a 450–500 nm band pass exciter filter and red 
fluorescence with a 515–560 nm band pass exciter filter.

2.2.3 Surface topography and nanostructure of 
bacterial cells

The influence of NSAIDs on the morphology and surface 
topography of cells was investigated using a combined scanning 
system, comprising an atomic force microscope (AFM) 
MFP-3D-BIO™ (Asylum Research Inc., Santa Barbara, CA, 
United States) and a confocal laser scanning microscope (CLSM) 
Olympus Fluo View 1000 (Olympus Corporation, Tokyo, Japan). 
Sample preparation and scanning procedures followed the methods 
outlined in previous studies (Kuyukina et  al., 2014; Ivshina et  al., 
2019). Image processing and analysis, including the determination of 
root mean square roughness of the cell surface, cell length, and cell 
width, were performed using Igor Pro 6.22A software (WaveMetrics, 
Portland, OR, United States). Furthermore, cell volume and surface 
area were calculated using the formulas provided in a study (Neumann 
et al., 2005).

2.2.4 Ultrastructure of bacterial cells
The IEGM 1243 cells grown for 72 h on solid media, including 

nutrient agar (NA), NA + 50 mg/L IBP, and mineral salt agar 
(MSA) + 50 mg/L IBP, were harvested, fixed in a solution containing 
2.5% glutaraldehyde (w/v) in 0.1 M sodium cacodylate buffer (pH 7.2) 
for 2.5 h. Subsequently, the fixed cells underwent post-fixation using 
a 1% (w/v) osmium tetroxide solution in the same buffer. To prepare 
the samples for microscopy, the fixed cells were dehydrated by a series 
of ethanol solutions, including absolute ethanol saturated with uranyl 
acetate, followed by embedding in araldite (Ivshina et al., 2022a). Thin 
sections were generated using an 8800 Ultrotome III (LKB-Produkter, 
Stockholm, Sweden), and these sections were stained with lead citrate. 
The resulting ultrathin sections were examined using a JEM-1400 
electron microscope (Japanese Electron Optics Laboratory, 
Tokyo, Japan).

2.2.5 Elemental mapping of bacterial cells
The harvested IEGM 1243 cell suspensions (as described in 

section 2.2.4) were directly placed onto copper grids coated with 
formvar and carbon reinforcement, without the addition of any 
fixatives. These grids were then allowed to air-dry. For the analysis, 
transmission electron microscopy combined with energy-dispersive 
X-ray analysis (TEM-EDX) was performed using the JEM-1400 
microscope (Japanese Electron Optics Laboratory, Tokyo, Japan) 
equipped with an EDXA system (Inca Energy-350, Oxford 
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Instruments, Abingdon, United Kingdom). The microscope operated 
at an accelerating voltage of 80 keV with a tilt angle of 15° (Ivshina 
et al., 2022a). The acquisition of EDX spectra and elemental maps was 
carried out using AZtec software (Oxford Instruments, Abingdon, 
United Kingdom). In this analysis, only the main Kα peaks of carbon 
(C), oxygen (O), nitrogen (N), phosphorous (P), potassium (K), 
sodium (Na), copper (Cu), calcium (Ca), magnesium (Mg), sulfur (S), 
chlorine (Cl), silicon (Si), and iron (Fe) were taken into consideration.

2.3 Catalase activity

The catalase activity of R. cerastii IEGM 1243 was determined 
spectrophotometrically following the protocol described by Gogoleva 
et al. (2012). Bacterial cells cultured with glucose with and without 
NSAIDs were centrifuged at 3,000 rpm for 5 min, washed with 
phosphate buffer (pH 7.0), and resuspended in the same buffer to 
obtain an optical density (OD492) of 0.2. Next, a 0.00125 M hydrogen 
peroxide (H2O2) solution (1 mL) was added to 200 μL of the cell 
suspension, and the mixture was incubated for 10 min at room 
temperature. To stop the decomposition of H2O2 by catalase, 100 μL of 
2 M HCl solution was added. Subsequently, a 0.025 M potassium iodide 
solution (1 mL) was added to the resulting mixture, gently mixed, and 
centrifuged at 3,000 rpm for 15 min. Distilled water was used in control 
samples instead of cell suspensions. Finally, the absorbance of the 
supernatant was measured at 492 nm using a Lambda EZ201 
spectrophotometer (Perkin-Elmer, Waltham, MA, United States).

The catalase activity was calculated using the equation:

 
A

Tcat

V C

b

OD OD

OD
=

−( )
×

12 5 1. /

where Acat represents the catalase activity in μM/min × OD; ODv 
is the optical density of the supernatant in the experimental sample 
(in arbitrary units of optical density); ODc is the optical density of the 
supernatant in the control sample (in arbitrary units of optical 
density), T is the incubation time of bacteria in the presence of H2O2 
(10 min); and ODb is the optical density of the bacterial suspension 
(OD492 0.2). The catalase activity was expressed as a percentage of the 
initial level.

2.4 Respirometry

Cell respiration activity was evaluated using a 10-channel Micro-
Oxymax® respirometer (Columbus Instruments, Columbus, OH, 
United States) (Ivshina et al., 2019). The experiments were conducted 
in 300 mL Micro-Oxymax glass flasks containing 100 mL of mineral 
salt medium with constant agitation (160 rpm, 28 ± 2°C). The rate 
(μL/h) and accumulation (μL) of oxygen consumption were measured. 
Automated recording of respiratory activity was performed every 
30 min over a period of 7 days.

2.5 Analytical procedure

The removal rates of IBP and DCF were determined using high-
performance liquid chromatography (HPLC) on an LC Prominence 

chromatograph (Shimadzu Corporation, Kyoto, Japan) equipped with 
a reverse-phase C18 column, 25 cm × 4.6 mm, 5 μm (Supelco Inc., 
Bellefonte, PA, United States) and a diode array detector. Mobile phase 
consisted of a phosphate buffer solution (pH 5.0) and acetonitrile, 
mixed in a 60:40 ratio. Elution was performed isocratically at a flow 
rate of 0.5 mL/min, and detection was carried out at a wavelength of 
254 nm. The injection volume was 20 μL, and the column thermostat 
temperature was set at 40°C. Under these conditions, the retention 
times for IBP and DCF were determined to be  9.28 ± 0.03 and 
18.70 ± 0.02 min, respectively. Prior to analysis, samples were prepared 
by centrifuging for 5 min at 10,000 rpm. The resulting supernatants 
were then filtered using a 0.20 μm nylon membrane filter (Nantong 
FilterBio Membrane Co., Ltd., Nantong, China). The concentrations 
of DCF and IBP were calculated by comparing the areas under the 
peaks with those of the standard solutions.

2.6 Data analysis and statistics

For cell analysis and quantification, ImageJ software (US National 
Institutes of Health, Bethesda, Maryland, United States) was employed. 
A detailed protocol for image processing can be found here (https://
www.allevi3d.com/livedead-assay-quantification-fiji/ accessed on 31 
May 2023).

Statistical analyses were performed to determine the differences 
in the experimental data using one-way ANOVA followed by 
two-sided Dunnett’s t-test. The software used for conducting the 
statistical tests was SPSS 23.0 (IBM, Armonk, New  York, 
United States). The significance level for the results was set at p < 0.05. 
Each experiment was performed in triplicate to ensure accuracy and 
reproducibility of the results. For presenting the data from repeated 
experiments, the values were expressed as mean ± standard deviation.

3 Results and discussion

3.1 Catalytic activity of Rhodococcus 
cerastii IEGM 1243 towards NSAIDs

According to our data, R. cerastii IEGM 1243 exhibited moderate 
biodegradative activity towards the tested pharmaceutical compounds 
(Figure 1). When considering individual NSAIDs, the residual content 
of IBP after a 7 days period was 68.4%, while that of DCF was 75.9%. 
Interestingly, when using the combination of NSAIDs, the degradation 
of IBP was higher, with a residual content of 40.4% after 7 days. 
However, the degradation of DCF in this case was negligible, with a 
residual content of 89.7%. No losses of substances were observed in 
abiotic and sorption controls, indicating the biocatalytic nature of the 
degradation process.

In our previous studies, we confirmed that R. cerastii strain IEGM 
1278 was capable of completely cometabolizing 100 mg/L IBP within 
6 days in the presence of n-hexadecane (Ivshina et al., 2021b). Other 
research showed that IBP could be  efficiently degraded at high 
concentrations (200–1,000 mg/L) by both Gram-negative strains 
(Sphingomonas sp. Ibu-2, Variovorax sp. Ibu-1) and Gram-positive 
strains [Bacillus thuringiensis B1(2015b), Citrobacter freundii PYI-2, 
C. portucalensis YPI-2, Nocardia sp. NRRL 5646, Patulibacter sp. I11] 
(Jan-Roblero and Cruz-Maya, 2023). On the other hand, DCF is more 
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recalcitrant to biodegradation. Previously, we isolated R. ruber strain 
IEGM 346, which was able to degrade only 50% of 50 mg/L DCF 
within 60 days (Ivshina et al., 2019). In other reports, only Gram-
negative Klebsiella sp. KSC exhibited the capability to degrade high 
concentrations of DCF (70 mg/L) within three days, while other 
strains such as Pseudomonas moorei KB4, Labrys portucalensis F11, 
Raoultella sp. DD4 degraded much lower concentrations (ranging 
from 0.5 to 7 mg/L) over up to 28 days (Wojcieszyńska et al., 2023). 
The results obtained in our study indicate that further optimization of 
biodegradation conditions for IEGM 1243 is necessary, as our findings 
do not stand out in this regard.

However, it is important to note that the biodegradation pattern 
was not the primary focus of our research. We previously outlined the 
putative biodegradation pathways of DCF and IBP in Ivshina et al. 
(2019, 2021b). Additionally, Guzik and Wojcieszyńska’s (2019) 
thorough review covered the microbiological degradation pathways 
of NSAIDs. Instead, our study primarily concentrated on the 
physiological and morphological responses of rhodococci when 
exposed to NSAIDs, which are presented below.

Concurrently with the biodegradation experiments, we conducted 
quantitative assessments of total cell count and cell viability percentage 
(Figure 1; Supplementary Figures S1, S2). The initial cell count was 
determined to be 0.96 cells/mL × 107. Throughout the duration of the 
experiment, an increase in biomass was consistently observed across 
all experimental conditions, with the most significant growth recorded 
in both the control and in the presence of IBP. The highest cell count 
was attained when IBP was present, peaking at 3.32 cells/mL × 107 
after 4 days of the experiment. In parallel, the viability of rhodococci 
in the control sample exhibited an upward trend until day 4, with 
viability levels rising from 59.5 to 94.9%, followed by a decline to 
54.7% on day 7. In the presence of IBP, the maximum cell viability was 
reached on day 5 (80.2%), gradually decreasing to 65.9% on day 7. 
Notably, the overall cell count in the presence of DCF and the NSAID 

mixture on day 7 of the experiment amounted to 2.1 and 1.59 cells/
mL × 107, respectively. Interestingly, these conditions exhibited the 
highest proportion of viable cells at the end of the experiment.

Analysis of cellular respiration in the presence of NSAIDs revealed 
the following patterns (Figure 2). Both in the biotic control and in the 
presence of IBP, the lag phase of IEGM 1243 cells was less than 24 h 
(Figure 2A). The maximum rate of oxygen consumption in the control 
was reached after 1.5 days of the experiment, amounting to 
4753.7 μL/h. In contrast, in the presence of IBP, this parameter was 
recorded after 2.5 days of the experiment, with a significantly higher 
value of 13125.4 μL/h.

The transition of rhodococci to the stationary growth phase 
(Figure  2B) correlated with a slowdown in the biodegradation of 
NSAIDs (Figure 1). DCF and the mixture exerted a suppressive effect 
on the metabolic activity of rhodococci for a period of 3–4 days. The 
maximum rate of oxygen consumption in the presence of DCF was 
12580.9 μL/h after 4.5 days of the experiment. Under the combination 
of IBP and DCF, the peak oxygen consumption was observed on day 
6, measuring 12936.4 μL/h.

Cumulative oxygen uptake analysis demonstrated that cells 
exhibited higher metabolic activity in the presence of NSAIDs 
(Figure  2B). For instance, on day 9, the total amount of oxygen 
consumed in the control was 611911.4 μL, whereas in the presence of 
IBP, DCF, and their mixture, these values were 956805.2 μL, 
1,043,623 μL, and 1,070,803 μL, respectively. The increased amount of 
oxygen consumed in the presence of DCF and the NSAID mixture 
after 7 days of the experiment correlates with data on higher cell 
viability under these conditions (Figure 1; Supplementary Figure S2).

Catalase, as a vital antioxidant enzyme, plays a crucial role in the 
reduction of hydrogen peroxide (H2O2) to oxygen (O2) and water 
(H2O). This enzyme holds significant importance in bacterial stress 
response and the degradation of xenobiotics (Wang et al., 2000, 2020; 
Kaushal et al., 2018). Rhodococcus spp. are well-known for their high 

FIGURE 1

Residual content of NSAIDs and cell viability of R. cerastii IEGM 1243 during the biodegradation process. Cells were cultivated in mineral salt medium 
supplemented with 0.5  g/L glucose (control) and 50  mg/L IBP, 50  mg/L DCF or their mixture (50  mg/L IBP  +  50  mg/L DCF). Asterisks indicate significant 
differences between control and treatments (p  <  0.05).
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abundance of catalases (Yuan et al., 2021), which makes them robust 
and adaptable microorganisms. In the context of xenobiotic 
degradation, including the biodegradation of NSAIDs, the high levels 
of catalases in rhodococci provide significant benefits. The presence 
of NSAIDs can lead to the production of harmful reactive oxygen 
species in the bacteria. However, thanks to their abundant catalases, 
Rhodococcus spp. may efficiently neutralize these ROS, ensuring their 
metabolic activity and successful degradation of the xenobiotics.

The initial catalase activity of R. cerastii IEGM 1243 was 0.66 
relative units corresponding to 100%. Within the first day, a decrease 
in catalase activity was observed in all tested variants. However, the 
most significant (p < 0.05) changes in catalase activity of rhodococci 
were observed in the presence of DCF and the NSAID mixture 
(Figure 3). The decrease in catalase activity under these conditions 
during the first 3 days can be attributed to the cells being in the lag 
phase of growth (refer to Figure 2A). Interestingly, on the second day, 
there was an increase in catalase activity in the presence of NSAIDs, 
while in the control group, the activity continued to decrease. The 
opposite pattern was observed on the third day. The increase in catalase 
activity in the samples with NSAIDs on day 4 can be explained by the 
bacteria entering the exponential growth phase, active degradation of 
NSAIDs (as seen in Figure  1), and possible accumulation of 
metabolites. The decrease in catalase activity in all samples on day 7 
could be associated with the transition to the stationary growth phase, 
slowing down of cellular metabolism, and the formation of multicellular 
aggregates (Supplementary Figure S2) (Wood and Sørensen, 2001). 
Moreover, it is hypothesized that cell aggregation enhances intercellular 

synergy, leading to a reduced need for cells to secrete the necessary 
enzymes (D’Souza et al., 2023). By forming multicellular aggregates, 
bacterial cells can establish communication networks that facilitate the 
exchange of genetic material and metabolic by-products. This can lead 
to a more efficient distribution of tasks among the cells, allowing some 
individuals to focus on enzyme production while others specialize in 
different functions. Consequently, this division of labor within the 
aggregated community can reduce the overall demand for enzyme 
secretion by individual cells.

3.2 Morphometric parameters of 
Rhodococcus cerastii IEGM 1243 cells 
exposed to NSAIDs

Studies on cell morphology and morphogenesis are of great 
importance for understanding cell growth, reproduction, and 
adaptation to the environment (Young, 2006; Levin and Angert, 2015; 
Ojkic et al., 2019; Shi et al., 2021; Govers et al., 2023). In this study, 
we analyzed the morphometric parameters of live cells of R. cerastii 
IEGM 1243 exposed to NSAIDs, and the results are presented in 
Figures 4–7, Table 1, and Supplementary Figures S3–S5. Initially, in 
their native state, the R. cerastii IEGM 1243 cells exhibited an 
elongated rod-shaped morphology (Figures 4A,B) with distinct peaks 
and valleys (Figure 4D), as well as a rough cell surface.

Rod-shaped bacteria have the ability to readily adapt their shape 
in response to changes in the surrounding environment (Chang and 
Huang, 2014; Ojkic et al., 2019). In our study, we observed that the 
control cells underwent shape alterations on day 4, with a reduction 
in length and an increase in width (Figure 5 and Table 1). However, 
according to height measurements, no significant differences in cell 
sizes were observed between the NSAID-treated cells and the control 
(Figures 6, 7 and Table 1). Notably, when exposed to DCF and the 
NSAID mixture, cells produced a significant amount of extracellular 
polymeric substances, which hindered the assessment of cell profile 
and height (Figure 7).

On the seventh day, significant differences in morphometric 
parameters of cells in the presence of NSAIDs were observed, 
particularly a decrease in surface area, volume, and an increase in 
the surface area-to-volume ratio (SA/V) (Table  1). SA/V is an 

FIGURE 3

Catalase activity of R. cerastii IEGM 1243 in the presence of NSAIDs. 
Cells were cultivated in mineral salt medium supplemented with 
0.5  g/L glucose (control) and 50  mg/L IBP, 50  mg/L DCF or their 
mixture (50  mg/L IBP  +  50  mg/L DCF).

FIGURE 2

Oxygen uptake rate (A) and cumulative oxygen consumption (B) by 
R. cerastii IEGM 1243 cells exposed to NSAIDs. Cells were cultivated in 
mineral salt medium supplemented with 0.5  g/L glucose (control) and 
50 mg/L IBP, 50 mg/L DCF or their mixture (50 mg/L IBP +  50 mg/L DCF).
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important physical parameter that regulates the influx and efflux of 
substances and metabolites (Ojkic et al., 2022). The cell size, shape, 
and SA/V are interconnected, and individual cells can change their 
size and shape to achieve an optimal SA/V (Harris and Theriot, 
2018; Shi et al., 2021). Previously, we observed alterations in the 
SA/V ratio in rhodococci exposed to pharmaceuticals (Ivshina et al., 
2019; Tyumina et  al., 2019; Ivshina et  al., 2021b, 2022b). For 
example, when exposed to toxic substrates such as DCF or naproxen, 
cells tend to reduce their SA/V to minimize the exposed cell surface 
for contact with the stressor (Ivshina et al., 2019, 2022b). Studies by 
other authors have shown that in the presence of ampicillin, 
Escherichia coli cells maintain an ellipsoidal shape and a low SA/V 
to reduce their metabolic activity, conserve energy, and prevent 
division (Uzoechi and Abu-Lail, 2019). The reduction in metabolic 
activity, in turn, leads to cell persistence and resistance (Ojkic et al., 
2022). On the other hand, in the presence of less toxic compounds 
or under carbon source limitation, SA/V ratio may increase for more 
efficient contact between cells and a substrate (Ivshina et al., 2019, 
2021b). In the short term, a cell is capable of regulating its shape by 

adjusting turgor pressure. However, over longer time scales, changes 
in cell size are predominantly determined by alterations in cell width 
(Oldewurtel et al., 2021). In our case, on day 7, the NSAID-treated 
cells reduced their width (p < 0.05), which ultimately resulted in 
smaller cell volume and larger SA/V. Possible reasons for the change 
in SA/V ratio include the availability of precursors for peptidoglycan 
biosynthesis and the presence of inhibitors of fatty acid biosynthesis 
(Harris and Theriot, 2018). Additionally, cell size is influenced by 
the levels of transport proteins, metabolic activity, and the 
accumulation of cell division protein (FtsZ) (Ojkic et  al., 2019; 
Bertaux et al., 2020).

3.3 Ultrastructural analysis of Rhodococcus 
cerastii IEGM 1243 exposed to ibuprofen

The effect of IBP on the ultrastructure of R. cerastii IEGM 1243 
cells was investigated using transmission electron microscopy (TEM) 
analysis. TEM provides high-resolution imaging of cellular structures, 

FIGURE 4

AFM (A), AFM-CLSM (B) images, height (C) and profile (D) of R. cerastii IEGM 1243 cells on day 0.
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allowing for detailed observations of cellular ultrastructure. 
Comparative analysis of ultrathin sections revealed that the 
morphological traits of rhodococci were similar in cultures developed 
under both control and IBP-containing conditions (Figure  8; 
Supplementary Figures S6–S8). As evident from the Figure 8E, strain 
IEGM 1243 exhibits an apical mode of cell elongation, resulting in the 
increased accumulation of new cell wall material at the cell poles 
(Donovan and Bramkamp, 2014). The cells exhibited characteristic 
features, including the presence of an outer capsular layer, which was 
visually discernible as protrusions. Furthermore, they displayed a 
stratified cell wall with an outer layer that appeared electron-dense, 
indicating the existence of a well-defined cell envelope. Additionally, 
the cytoplasmic membrane remained intact, indicating the overall 
structural integrity of the cells.

In both the control and IBP-treated cells, TEM revealed the 
presence of two distinct types of structures: electron-transparent 
bodies, likely lipid inclusions, and electron-dense bodies, believed to 

be polyphosphates. Intracellular lipid inclusions important energy 
storage compounds that fulfill carbon requirements and maintain 
redox homeostasis, enabling bacteria to survive for extended periods 
(Alvarez et al., 1996, 2000; Mallick et al., 2021). Furthermore, they play 
a crucial role in the pathogenesis of mycobacteria (Mallick et  al., 
2021). Rhodococcus spp. commonly utilize polyhydroxyalkanoates, 
triacylglycerols, and glycogen as intracellular carbon reserves 
(Hernández et al., 2008; Cappelletti et al., 2020).

Nile Red staining of the bacteria revealed the presence of a 
small amount of lipid inclusions, mainly located at the periphery 
of the cells, at the initial time point (Figure 9). By day 4 of the 
experiment, there was a tendency for the accumulation of lipid 
inclusions in all treatments, particularly evident in the control 
and in the presence of IBP. The number of inclusions reached up 
to 10 per cell, predominantly localized in the central part of the 
cell. In the case of DCF and the NSAID mixture, the quantity and 
size of lipids were smaller, and the inclusions were often located 

FIGURE 5

AFM (A), AFM-CLSM (B) images, height (C) and profile (D) of R. cerastii IEGM 1243 cells grown in mineral salt medium supplemented with 0.5 g/L 
glucose for 4 days.
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FIGURE 6

AFM (A), AFM-CLSM (B) images, height (C) and profile (D) of R. cerastii IEGM 1243 cells grown in mineral salt medium supplemented with 0.5  g/L 
glucose and 50  mg/L IBP for 4  days.

FIGURE 7

AFM of R. cerastii IEGM 1243 cells grown in mineral salt medium supplemented with 0.5  g/L glucose and 50  mg/L DCF (A) or 50  mg/L IBP  +  50  mg/L 
DCF (B) for 4  days.
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FIGURE 8

TEM-images of R. cerastii IEGM 1243 grown on nutrient agar 
(control, A,E) supplemented with 50  mg/L IBP (B,D) or on minimal 
salt agar supplemented with 50  mg/L IBP (C). Cells were cultivated 
for 3  days. CL, capsular layer; CM, cytoplasmatic membrane; CW, cell 
wall; EPS, extracellular polymeric substances; LI, lipid inclusions; 
MLS, membrane-like structures; PP, polyphosphate granules; S, 
septum. Scale bars correspond to 200  nm.

at the periphery of the cells. After 7 days of observation, the 
control cells maintained a significant amount of lipid inclusions; 
however, individual cells without intracellular lipids were also 

observed. When exposed to NSAIDs, cells primarily depleted 
their lipid reserves, with individual lipid granules located at the 
periphery of the cells (IBP and NSAID-mixture) or at the center 
of the cells (DCF). The red fluorescence around the cell perimeter 
could be  associated with the lipids of the cell membranes 
(Presentato et al., 2018).

According to a previous study (Wältermann et al., 2005), the 
process of lipid-body synthesis involves the formation of small lipid 
droplets that remain attached to membrane-associated enzymes. 
Over time, these droplets aggregate and merge, leading to the 
formation of larger structures known as membrane-bound lipid 
prebodies. Eventually, these lipid prebodies are released into the 
cytoplasm, becoming mature entities within the cell. Our current 
study corroborates these findings (Supplementary Figure S9). For 
instance, at the beginning of the experiment, IEGM 1243 cells 
grown in the presence of glucose (control) exhibited small 
inclusions at the periphery, which likely represent small lipid 
droplets. As time progressed, these droplets transitioned into the 
cytoplasm, forming larger lipid prebodies in the early stages and 
eventually maturing into large lipid inclusions on days 2 and 3. The 
formation of lipid inclusions in the presence of IBP followed a 
similar scenario, while under the influence of DCF and the NSAID 
mixture, the maturation of lipid inclusions occurred on day 4.

When IBP was present, cells exhibited the formation of 
intracellular membrane-like structures (Figure  8D; 
Supplementary Figure S7). These structures appeared as loop-like 
formations and are believed to be  primarily involved in the 
transportation of complex compounds and their subsequent 
degradation through the action of membrane-bound enzymes (Royes 
et al., 2020; Thi Mo et al., 2022). Similar structures have been observed 
in previous studies involving rhodococci grown in the presence of 
benzoate (Solyanikova et al., 2017), oleanolic acid (Luchnikova et al., 
2022), as well as liquid and solid n-hexadecane (Thi Mo et al., 2022). 
This suggests a common mechanism or adaptive response in the 
formation of these membrane-like structures across different 
environmental conditions and compound exposures.

Polyphosphates were represented as compartments mainly 
located at the cell poles (Figures 8A,C). Similar observations of 

TABLE 1 Morphometric features of R. cerastii IEGM 1243 cells grown in mineral salt medium supplemented 0.5  g/L with glucose (control) and 50  mg/L NSAIDs.

Treatment Length, μm Width, μm Surface area 
(SA), μm2

Volume (V), 
μm3

SA/V, μm−1 Root-mean-square 
roughness, nm

Day 0

Control 2.91 ± 0.44 0.76 ± 0.10 7.89 ± 1.87 1.35 ± 0.50 6.08 ± 0.80 47.71 ± 15.90

Day 4

Control 2.56 ± 0.53 0.80 ± 0.14 7.52 ± 2.32 1.35 ± 0.65 5.96 ± 0.91 65.15 ± 20.17

IBP 2.85 ± 0.68* 0.82 ± 0.09 8.40 ± 2.04* 1.52 ± 0.52 5.67 ± 0.57 118.03 ± 46.58*

DCF 2.64 ± 0.76 0.75 ± 0.08* 7.06 ± 2.00 1.16 ± 0.42 6.24 ± 0.60 nd

DCF + IBP 2.67 ± 0.69 0.79 ± 0.12 7.66 ± 2.30 1.35 ± 0.60 5.97 ± 0.84 nd

Day 7

Control 2.56 ± 0.56 1.00 ± 0.21 9.65 ± 2.71 2.08 ± 0.97 4.96 ± 0.81 113.55 ± 36.62

IBP 2.54 ± 0.54 0.78 ± 0.14** 7.26 ± 2.23** 1.27 ± 0.68** 6.05 ± 0.78** 130.35 ± 35.12

DCF 2.59 ± 0.67 0.79 ± 0.12** 7.40 ± 2.19** 1.29 ± 0.58** 6.01 ± 0.75** 235.46 ± 72.87**

DCF + IBP 2.85 ± 0.72** 0.81 ± 0.12** 8.28 ± 2.19** 1.49 ± 0.56** 5.81 ± 0.81** 219.34 ± 39.72**

Values significantly (p < 0.05) differ from controls on the fourth day (*), and on the seventh (**) day. The results are presented as mean ± standard deviation (n = 100).
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polyphosphates were made in cells of R. rhodochrous IEGM 1362 
grown in a nutrient-rich medium and in the presence of 
(−)-isopulegol (Ivshina et  al., 2022a), R. rhodochrous IEGM 
757 in the presence of oleanolic acid (Luchnikova et al., 2022), 
and R. erythropolis N9T-4  in a basal medium without any 
additional carbon, nitrogen, sulfur, and energy sources 
(Yoshida et  al., 2017). In the latter case, the authors referred 
to these compartments as oligobodies and confirmed their 
high phosphorus and potassium content using X-ray spectroscopy. 
Phosphorus-rich granules are composed of linear chains of 
polyphosphate and cations such as magnesium, potassium, 
and calcium (Keim et  al., 2005). Polyphosphate inclusions 
serve as an internal phosphate reserve in cells and play an 
important role in the adaptive mechanisms of bacteria 
under suboptimal environmental conditions. In our case, 
particularly significant accumulations of phosphorus were 
observed in cells grown on mineral salt agar supplemented 
with IBP. TEM-EDX analysis showed distinct zones of 
increased phosphorus accumulation at the cell poles, along 
with significant amounts of potassium and magnesium 
(Figure 10; Supplementary Figures S10–S13). Furthermore, the 
elevated potassium content in the external environment in the 
presence of IBP may indicate its efflux from the cells due to the 
disruption of cell membrane permeability (Luchnikova et  al., 
2022). However, it is essential to note that further investigations 
are needed to fully understand the underlying mechanisms 
behind these observations.

4 Conclusion and future perspectives

In this work, we  investigated how individual and combined 
NSAIDs affect Rhodococcus cerastii strain IEGM 1243. Among the key 
findings, we observed significant alterations in catalase activity and a 
noticeable depletion of lipid inclusions in bacterial cells exposed to IBP, 
DCF, and their combination. These changes in catalase activity are 
indicative of adjustments in the stress response mechanisms employed 
by R. cerastii strain IEGM 1243 when confronted with NSAID-induced 
stressors. Furthermore, the observed depletion of lipid inclusions 
suggests potential modifications in the lipid metabolism pathways, 
which may play a pivotal role in adapting to NSAID exposure.

Morphometric analysis has revealed significant differences in cell 
size and surface area-to-volume ratio in the presence of NSAIDs. 
These alterations in cellular morphology might be  influenced by 
factors related to peptidoglycan biosynthesis and fatty acid 
biosynthesis inhibitors.

For the first time, we  employed high-precision electron 
microscopy to uncover ultrastructural changes and element mapping 
of R. cerastii IEGM 1243 cells treated with IBP. This advanced 
technique revealed the structural integrity of the cells, even in the 
presence of the pharmaceutical. The identification of lipid inclusions, 
polyphosphates, and intracellular membrane-like structures in 
IBP-treated cells provides a deeper understanding of the cellular 
adaptations that occur in response to NSAIDs. These ultrastructural 
insights open new avenues for research into the mechanisms of 
bacterial resistance and adaptation at the nanoscale level.

FIGURE 9

Fluorescent microscopy images of R. cerastii IEGM 1243. Cells were cultivated in mineral salt medium supplemented with 0.5  g/L glucose (control) and 
50  mg/L IBP, 50  mg/L DCF or their mixture (50  mg/L IBP  +  50  mg/L DCF). Yellow dots are lipid inclusions.
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FIGURE 10

TEM-EDX analysis: Images and elemental mapping (C, O, K, P) of R. cerastii IEGM 1243 cells. Cells were grown on nutrient agar (Сontrol, NA) 
supplemented with IBP (NA  +  Ibuprofen) or on minimal salt agar supplemented with IBP (MSA  +  Ibuprofen) for 3  days. Other elements are presented in 
Supplementary Figures S11–S13. The white arrows indicate polyphosphate inclusions.

Looking ahead, future prospects in this field should incorporate 
advanced omics techniques to unravel the underlying genetic, 
transcriptomic, proteomic, and metabolomic changes in R. cerastii 
IEGM 1243 under NSAID exposure. Such sophisticated analyses can 
provide a holistic understanding of the bacterial response, shedding 
light on the intricate molecular mechanisms driving adaptation to 
pharmaceutical pollution. Additionally, the knowledge gained from 
understanding the adaptive reactions of bacteria towards 
pharmaceuticals can be harnessed in the development of biocatalysts 
for pharmaceutical waste disposal, aligning with the growing need for 
sustainable and environmentally friendly approaches to address 
pharmaceutical contamination.
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